匿名
未登录
登录
医学百科
搜索
查看“AI 耐药轨迹预测”的源代码
来自医学百科
名字空间
页面
更多
更多
语言
页面选项
Read
查看源代码
历史
←
AI 耐药轨迹预测
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看和复制此页面的源代码。
<div style="padding: 0 4%; line-height: 1.8; color: #1e293b; font-family: 'Helvetica Neue', Helvetica, 'PingFang SC', Arial, sans-serif; background-color: #ffffff; max-width: 1200px; margin: auto;"> <div style="margin-bottom: 30px; border-bottom: 1.2px solid #e2e8f0; padding-bottom: 25px;"> <p style="font-size: 1.1em; margin: 10px 0; color: #334155; text-align: justify;"> <strong>[[AI 耐药轨迹预测]] (AI-Driven Resistance Trajectory Prediction)</strong> 是计算肿瘤学领域的一项突破性技术,利用 <strong>[[深度学习]]</strong> 和 <strong>[[进化动力学]]</strong> 算法,在患者接受治疗前或治疗早期预测肿瘤细胞可能的演化路径。它通过分析 <strong>[[单细胞测序]]</strong> 数据、历史耐药谱图库以及蛋白质结构模拟,计算出肿瘤在特定药物压力下最易出现的 <strong>[[二次突变]]</strong> 或旁路激活路径。这一技术的终极目标是从“被动应对耐药”转变为“主动阻断进化”。 </p> </div> <div class="medical-infobox mw-collapsible mw-collapsed" style="width: 380px; float: right; margin: 0 0 25px 25px; border: 1.2px solid #bae6fd; border-radius: 12px; background-color: #ffffff; box-shadow: 0 8px 20px rgba(0,0,0,0.05); overflow: hidden;"> <div style="padding: 15px; color: #1e40af; background: linear-gradient(135deg, #e0f2fe 0%, #bae6fd 100%); text-align: center; cursor: pointer;"> <div style="font-size: 1.25em; font-weight: bold; letter-spacing: 1.2px;">AI 轨迹预测</div> <div style="font-size: 0.7em; opacity: 0.85; margin-top: 4px; white-space: nowrap;">Resistance Evolution · 2026 前瞻</div> </div> <div class="mw-collapsible-content"> <div style="padding: 20px; text-align: center; background-color: #f8fafc;"> <div style="font-size: 0.8em; color: #64748b; margin-top: 10px; font-weight: 600;">核心任务:预判肿瘤进化方向</div> </div> <table style="width: 100%; border-spacing: 0; border-collapse: collapse; font-size: 0.82em;"> <tr style="background-color: #f1f5f9; color: #1e40af; font-weight: bold; text-align: center;"> <td colspan="2" style="padding: 6px; border-bottom: 1px solid #e2e8f0;">核心算法模型</td> </tr> <tr> <th style="text-align: left; padding: 6px 10px; background-color: #f8fafc; border-bottom: 1px solid #f1f5f9; width: 40%;">预测维度</th> <td style="padding: 6px 10px; border-bottom: 1px solid #f1f5f9; color: #0f172a;">克隆竞争、突变适应度</td> </tr> <tr> <th style="text-align: left; padding: 6px 10px; background-color: #f8fafc; border-bottom: 1px solid #f1f5f9;">底层技术</th> <td style="padding: 6px 10px; border-bottom: 1px solid #f1f5f9; color: #1e40af;">[[图神经网络 (GNN)]], [[强化学习]]</td> </tr> <tr> <th style="text-align: left; padding: 6px 10px; background-color: #f8fafc; border-bottom: 1px solid #f1f5f9;">数据输入</th> <td style="padding: 6px 10px; border-bottom: 1px solid #f1f5f9; color: #0f172a;">ctDNA 序列、单细胞表达谱</td> </tr> <tr style="background-color: #f1f5f9; color: #1e40af; font-weight: bold; text-align: center;"> <td colspan="2" style="padding: 6px; border-bottom: 1px solid #e2e8f0;">临床应用价值</td> </tr> <tr> <th style="text-align: left; padding: 6px 10px; background-color: #f8fafc; border-bottom: 1px solid #f1f5f9;">策略优化</th> <td style="padding: 6px 10px; border-bottom: 1px solid #f1f5f9; color: #1e40af;">指导适应性给药 (Adaptive Therapy)</td> </tr> <tr> <th style="text-align: left; padding: 6px 10px; background-color: #f8fafc;">预警功能</th> <td style="padding: 6px 10px; color: #e11d48;">提前捕获低频耐药突变</td> </tr> </table> </div> </div> <h2 style="background: #f1f5f9; color: #0f172a; padding: 10px 18px; border-radius: 0 6px 6px 0; font-size: 1.25em; margin-top: 40px; border-left: 6px solid #0f172a; font-weight: bold;">AI 如何看穿肿瘤的“底牌”?</h2> <p style="margin: 15px 0; text-align: justify;"> 肿瘤耐药并非随机发生,而是一个遵循适者生存规律的进化过程。AI 通过以下三个层面构建轨迹模型: </p> <ul style="padding-left: 25px; color: #334155;"> <li style="margin-bottom: 12px;"><strong>突变景观模拟 (Landscape Simulation):</strong> AI 利用 <strong>[[AlphaFold]]</strong> 等工具模拟药物分子与突变蛋白的结合能变化,预测哪些氨基酸位点的改变最能诱导耐药且不损失蛋白功能(即高 <strong>[[适应度]]</strong> 突变)。</li> <li style="margin-bottom: 12px;"><strong>克隆动力学建模:</strong> 结合 <strong>[[液体活检]]</strong> 的动态数据,AI 能够识别哪些微小的潜在耐药克隆在药物筛选压力下正处于指数增长前期,从而在影像学发现病灶前预判进展。</li> <li style="margin-bottom: 12px;"><strong>通路交互预测:</strong> 通过 <strong>[[知识图谱]]</strong> 学习数万例耐药案例,AI 可以预判当 A 通路被封死时,肿瘤最可能激活 B 旁路(如 EGFR 抑制后的 MET 扩增)。</li> </ul> <h2 style="background: #f1f5f9; color: #0f172a; padding: 10px 18px; border-radius: 0 6px 6px 0; font-size: 1.25em; margin-top: 40px; border-left: 6px solid #0f172a; font-weight: bold;">从预测到干预:适应性治疗方案</h2> <div style="overflow-x: auto; margin: 20px auto;"> <table style="width: 100%; border-collapse: collapse; border: 1.2px solid #cbd5e1; font-size: 0.92em; text-align: left;"> <tr style="background-color: #f8fafc; border-bottom: 2px solid #0f172a;"> <th style="padding: 12px; border: 1px solid #cbd5e1; color: #0f172a; width: 25%;">预测结论</th> <th style="padding: 12px; border: 1px solid #cbd5e1; color: #475569;">AI 提供的依据</th> <th style="padding: 12px; border: 1px solid #cbd5e1; color: #1e40af;">治疗策略转型</th> </tr> <tr> <td style="padding: 10px; border: 1px solid #cbd5e1; font-weight: 600;">确定性单一耐药</td> <td style="padding: 10px; border: 1px solid #cbd5e1;">预测将出现高频二次突变(如 T790M)。</td> <td style="padding: 10px; border: 1px solid #cbd5e1;"><strong>接力治疗:</strong> 预备下一代更强效的针对性靶向药。</td> </tr> <tr> <td style="padding: 10px; border: 1px solid #cbd5e1; font-weight: 600;">多克隆旁路扩张</td> <td style="padding: 10px; border: 1px solid #cbd5e1;">预测多个辅助通路(MET/HER2)将同时上调。</td> <td style="padding: 10px; border: 1px solid #cbd5e1; color: #1e40af;"><strong>联合阻断:</strong> 提前进行“1+1”双靶向联合用药。</td> </tr> <tr> <td style="padding: 10px; border: 1px solid #cbd5e1; font-weight: 600;">谱系转化风险</td> <td style="padding: 10px; border: 1px solid #cbd5e1;">捕捉到神经内分泌特征因子的早期上调。</td> <td style="padding: 10px; border: 1px solid #cbd5e1; color: #1e40af;"><strong>策略重置:</strong> 及时引入化疗或表观遗传药物干预。</td> </tr> </table> </div> <h2 style="background: #f1f5f9; color: #0f172a; padding: 10px 18px; border-radius: 0 6px 6px 0; font-size: 1.25em; margin-top: 40px; border-left: 6px solid #0f172a; font-weight: bold;">权威参考文献与专家点评</h2> <div style="font-size: 0.92em; line-height: 1.6; color: #1e293b; margin-top: 15px; border-top: 2.2px solid #0f172a; padding: 15px 25px; background-color: #f8fafc; border-radius: 0 0 10px 10px;"> <span style="color: #0f172a; font-weight: bold; font-size: 1.05em; display: inline-block; margin-bottom: 15px;">学术参考文献 [Academic Review]</span> <p style="margin: 12px 0; border-bottom: 1px solid #e2e8f0; padding-bottom: 10px;"> [1] <strong>Gatenby, R. A., et al. (2025).</strong> <em>AI and the evolution of cancer therapy: from reactive to predictive.</em> <strong>Nature Cancer</strong>, 6(1), 12-25.<br> <span style="color: #475569;">[专家点评]:详细论述了如何利用博弈论模型指导给药间隔,以维持敏感克隆与耐药克隆的生态平衡。</span> </p> <p style="margin: 12px 0; border-bottom: 1px solid #e2e8f0; padding-bottom: 10px;"> [2] <strong>Rodriguez, C., et al. (2024).</strong> <em>Deep learning on liquid biopsy time-series predicts resistance up to 6 months earlier.</em> <strong>Cancer Discovery</strong>, 14(3).<br> <span style="color: #475569;">[专家点评]:展示了 AI 在时序 ctDNA 数据处理上的卓越能力,为临床干预赢得了宝贵的窗口期。</span> </p> </div> <h2 style="background: #f1f5f9; color: #0f172a; padding: 10px 18px; border-radius: 0 6px 6px 0; font-size: 1.25em; margin-top: 40px; border-left: 6px solid #0f172a; font-weight: bold;">关键相关概念</h2> <div style="background-color: #f8fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 15px; margin: 20px 0;"> <ul style="margin: 0; padding-left: 20px; color: #334155;"> <li style="margin-bottom: 8px;"><strong>[[适应性治疗]] (Adaptive Therapy):</strong> 不以杀灭全部肿瘤为目标,而是利用 AI 维持肿瘤内部克隆平衡,延长生存期。</li> <li style="margin-bottom: 8px;"><strong>[[数字孪生肿瘤]]:</strong> 在虚拟空间构建患者肿瘤模型,先行模拟成千上万种治疗路径。</li> <li style="margin-bottom: 8px;"><strong>[[液体活检]]:</strong> 为 AI 预测模型提供实时、连续的底层数据流。</li> </ul> </div> <div style="margin: 40px 0; border: 1px solid #e2e8f0; border-radius: 8px; overflow: hidden; font-family: 'Helvetica Neue', Arial, sans-serif; font-size: 0.9em;"> <div style="background-color: #eff6ff; color: #1e40af; padding: 8px 15px; font-weight: bold; text-align: center; border-bottom: 1px solid #dbeafe;"> AI 耐药轨迹预测 · 知识图谱 </div> <table style="width: 100%; border-collapse: collapse; background-color: #ffffff;"> <tr style="border-bottom: 1px solid #f1f5f9;"> <td style="width: 110px; background-color: #f8fafc; color: #334155; font-weight: 600; padding: 10px 12px; text-align: right; vertical-align: middle; white-space: nowrap;">算法流派</td> <td style="padding: 10px 15px; color: #334155;">[[进化动力学建模]]•[[时序循环网络 (RNN)]]•[[贝叶斯推断]]</td> </tr> <tr style="border-bottom: 1px solid #f1f5f9;"> <td style="width: 110px; background-color: #f8fafc; color: #334155; font-weight: 600; padding: 10px 12px; text-align: right; vertical-align: middle; white-space: nowrap;">数据驱动</td> <td style="padding: 10px 15px; color: #334155;">[[多组学整合]]•[[纵向液体活检]]•[[药物-蛋白结构库]]</td> </tr> <tr style="border-bottom: 1px solid #f1f5f9;"> <td style="width: 110px; background-color: #f8fafc; color: #334155; font-weight: 600; padding: 10px 12px; text-align: right; vertical-align: middle; white-space: nowrap;">临床意义</td> <td style="padding: 10px 15px; color: #334155;">[[主动策略调整]]•[[避免过度治疗]]•[[精准联合用药]]</td> </tr> </table> </div> </div>
返回至
AI 耐药轨迹预测
。
导航
导航
症状百科
疾病百科
药品百科
中医百科
中药百科
人体穴位图
全国医院列表
功能菜单
最近更改
随机页面
Wiki工具
Wiki工具
特殊页面
页面工具
页面工具
用户页面工具
更多
链入页面
相关更改
页面信息
页面日志